This product catalogue is produced by the Geospatial Information Support Unit under the Emergencies division of the United Nations World Food Programme (WFP).

The designations employed and the presentation of material in the map(s) do not imply the expression of any opinion whatsoever of WFP concerning the legal or constitutional status of any country, territory or sea area, or concerning the delimitation of frontiers.

The depiction and use of boundaries, geographic names and related data shown on the map and included in lists, tables, documents, and databases on this web site are not warranted to be error free nor do they necessarily imply official endorsement or acceptance by the WFP or its member organizations. WFP is not accountable for the data and cannot guarantee that they are correct, accurate or comprehensive.

Front Cover
Watercolor Painting of Water Colors in Arabian sea

Acquired by NASA MODIS on 23 Nov 2018

Background
Scars of Somme, Northern France

Acquired by NASA Landsat 8 on 21 Oct 2018
WELCOME

In the increasingly challenging contexts, which the World Food Programme (WFP) operates in, the need for accurate and real-time information has never been so crucial. Geographic Information System (GIS) is critical in understanding the complexity of WFP operations and optimising our responses. GIS provides in-depth analysis and visualises situations on the ground to provide WFP staff with up to date and accurate intelligence.

GIS is used in all stages of the disaster cycle – from preparedness to response and at times, recovery. Even in the most remote locations or where infrastructure has been destroyed, we are constantly gathering data, from satellites, drones, apps and mobile phones, to support our emergency response. In order to utilise the full potential of GIS we need to work together with all stakeholders, internal and external, to continue to bridge the gap between needs from the field and services offered by different partners.

WFP is constantly utilising new and cutting-edge technologies to ensure we are better prepared and able to provide humanitarian assistance to every corner of the globe as and when it is needed. From the Integrated Context Analysis (ICA) – combining food insecurity trends with exposure to shocks to understand their impacts - to the Automated Disaster Analysis and Mapping (ADAM) system – alerting staff and partners in near real time – WFP has embraced the use of recent technologies, big data and advanced analytics to improve our situational awareness on the ground.

I see GIS in action on a daily basis in our emergency operations across the globe and at all levels of the emergency management of a response. From our field staff that need detailed operational maps to HQ senior management where information on key indicators is essential in making life-saving decisions. When I was acting as Emergency Coordinator in the early phases of emergency response in Northeast Nigeria, spatial analysis played a crucial role in ensuring we had the most up to date and accurate data available. GIS allowed us to combine food security information, from the rapid field assessments, conflict hotspots and access constraints, to develop a clear understanding of where the needs and threats were and the best means to reach the hardest hit communities.

This catalogue is just a small selection of the thousands of maps and other geospatial products that our GIS teams produce. From flood extent dashboards to access constraints maps to the Humanitarian Topographic Atlas, this catalogue showcases some of the indispensable work that takes place at WFP.

Margot Vandervelden
INTRODUCTION

‘EVERYTHING THAT HAPPENS, HAPPENS SOMEWHERE’

One in nine people worldwide do not have enough to eat. Many of these people are in remote and inaccessible areas. When emergencies hit, previously accessible areas often become cut-off. Knowing how to rapidly reach these locations with lifesaving support is critical to the work of the United Nations World Food Programme (WFP).

The Geospatial Support Unit at WFP uses cutting-edge geospatial technology to visualize and analyze the areas we work in. The Unit produces over 2,000 maps every year to support Country Offices, Regional Bureaux and Headquarters in providing global assistance to over 86million people.

The Unit is a data hub - collecting diverse datasets such as food security indicators, environmental factors, conflict data, climate data and weather forecasts. In-depth analysis of this data and spatial visualization products enable WFP staff to develop insights into complex dynamics and inform decision-making.

WFP is constantly developing the latest technological advancements to create new products and improve existing technologies. From Unmanned Aerial Vehicles to Satellite Remote Sensing, geospatial technology is integrated into most of WFP’s work in fighting global hunger.

This catalogue showcases the diverse projects and products that use geospatial technology to inform WFP and WFP-led cluster operations.
DISASTER CYCLE

PREPAREDNESS
- HTA
- ICA
- SpaRC
- Land degradation analysis

EARLY WARNING
- ADAM Tropical Storms/Rainfall
- ADAM Earthquakes

RESPONSE
- Flood detection and preliminary impact analysis
- General Logistic Planning Map
- Access constraints, Concept of Operations

Disaster Management Cycle
In the vision of Early Warning to Early Action, the preparedness phase is crucial for providing rapid geospatial support during major emergencies. This phase includes data preparedness, having standard operating procedures in place and capacity building. ‘Data preparedness’ is the ability of organizations to be ready to responsibly and effectively deploy and manage data collection and analysis tools, techniques and strategies in a specific operational context before a disaster strikes. Data that is limited and less organized prolong or inhibit the ability to make informed decisions. Inaccurate/insufficient data may lead to poor understanding of the actual risk associated with any disaster. In the wake of an emergency, if data is not in an easily usable and well-defined format, it decreases the efficiency of map production. Being data ready would aid in providing immediate response with curated products.

Effective disaster preparedness provides a platform to design realistic and coordinated planning, by reducing duplication of efforts and increasing the collaboration between different agencies, households and communities. This section highlights a few of the crucial products made available before an emergency strikes.
Humanitarian Topographic Atlas (HTA) is a project developed for supporting field operations during humanitarian crisis. The primary goal of HTA is to create high-quality, detailed, up-to-date and comprehensible topographic maps covering the areas of WFP field operations. The maps produced by HTA are based on open data such as elevation, water bodies, roads, place names and all other map features from the OpenStreetMap project. HTA maps are updated automatically on a variable basis, depending on the level of the emergency in the country of interest (up to daily updates during the early stages of an emergency).

HTA enhances operational effectiveness, improving WFP’s capacity to engage with a range of partners, including national governments, NGOs and civil societies, to ensure that crisis-affected populations can meet their basic food needs during and in the aftermath of a crisis, by better understanding the existing geographical context and therefore improving response planning. The project aims to cover the whole world, in multiple scales and ready to print formats.
Land Degradation

In-house analysis of NASA MODIS satellite images and application of RUSLE equation using available

Malnutrition

The prevalence of GAM has been classified by the ranges currently used by the World Health Organization (WHO). This classification is largely arbitrary and simply reflects a convenient statistical grouping of prevalence levels all over the world:
The Integrated Context Analysis (ICA) is a process of consultations supported by mapped-out data that produces a strategic plan describing where different combinations of programme themes are appropriate to achieve goals of reducing food insecurity and climate-related hazard risk.

Historical trend analyses of food security, natural shocks and land degradation are combined to identify areas of convergence. Food security trend maps show areas where safety nets can address regular food insecurity and where natural shocks make recovery more important, while climate-related natural hazard maps show where Disaster Risk Management efforts can complement food security objectives. Atop this core foundation, mapped data on subjects including land degradation, nutrition, livelihoods and resilience can enrich theme-level strategic planning in which all pieces work together.

The ICA is the first step in the Three-Pronged Approach (3PA), an innovative programming approach developed by WFP in consultation with governments and partners, whose aim is to strengthen the design, planning and implementation of safety net and Disaster Risk Management programmes. The 3PA comprises, in addition to the ICA, two additional processes:

Seasonal Livelihood Programming (SLP, at the sub-national level): a consultative process that brings together communities, government, and partners to design multi-year, multi-sectorial operational plans using seasonal and gender lenses.

Community-Based Participatory Planning (CBPP, at the local level): a “from the bottom up” tool that ensures communities have a strong voice and lead in setting priorities. It supports multi-sectorial plans tailored to local priorities, ensuring community ownership.
ICA+

Conducting an ICA+ means overlaying multiple lenses related to a specific topic onto the foundation of the core ICA dimensions, in response to programming questions that the data in a core ICA cannot answer.

Using the ICA as a foundation for more detailed information enables all planning to happen in the same place and thus encourages coherence between programming themes. Adding additional indicators relevant to specific programme topics deepens the strategies that can emerge from the ICA analysis, and opens the door to more options. Decision makers can identify parts of a country where different programmatic focuses can merge with or support the core ICA themes of food security focused safety nets and risk management, or where needs may differ from these approaches.

ICA+ examples include lenses about access constraints trends, that could inform programme designers about the necessity of prepositioning food in areas consistently inaccessible, or gender equality, that could show how gender roles, relationships and responsibilities are directly linked to experience of food insecurity.
SpaRC is a Spatial Risk Calendar that combines data layers covering hazard exposure and population vulnerability. This determines baseline probabilistic levels of humanitarian impact associated with specific hazard types. SpaRC shows this baseline information about natural hazard impacts on a monthly basis, at a sub-national level, for the entire world.

Analysis results could be used to inform risk identification for early warning, emergency preparedness and readiness activities at country level and improved impact assessment for emergency response.
Land degradation can heighten the impact of natural hazards and represents a major contributor to food insecurity. These maps show where land degradation is particularly poor and efforts to halt and reverse land degradation are required, either as part of Disaster Risk Management or stand-alone programmes, and/or through policy.

Interventions that involve soil conservation and fertility measures, water harvesting and flood control, reinforce the agricultural production in a sustainable way and reduce the loss of biodiversity. Also, the restoration of degraded ecosystems through afforestation and rehabilitating irrigation schemes can improve the public health conditions, guaranteeing easier access to clean water and more diversified food.
Early warning is a process intended to trigger emergency preparedness actions ahead of a hazard event to reduce the possibility of harm or loss from a climate or conflict-related hazard. Key parts of an early warning system are risk identification, risk monitoring/analysis, warning communication, and complements to preparedness actions which relevant actors are capable of implementing.

It is critical that warning communication is tailored to the people expected to act and those at risk, including information about the amount of time preparedness actions will take, how they are inclusive of all members of a particular community/region and how long their effects will remain valid. This section highlights some of the Early Warning systems in place within WFP.
The Automatic Disaster Analysis and Mapping (ADAM) is an automated alert system performing a 24/7 research, collection, analysis and mapping of disaster-related data on a global scale, in order to reduce the time between the occurrence of an event and the time when the field level response starts.

A global overview of the currently active tropical storms and recent earthquakes – last 14 days – is available in the ADAM Live Map (https://gis.wfp.org/adam/). Subscriptions are open to members of the humanitarian community (UN agencies, NGOs, institutions, ministries, etc.), while the general public can receive updates via the ADAM Twitter account (@WFP_ADAM).
Within a few minutes following an earthquake, ADAM automatically creates a dashboard with critical information such as the magnitude, location and depth of the earthquake, the estimated number of people living in the affected area(s), weather forecast, location of crucial infrastructures and WFP's presence, and calculates the distance to the closest WFP facilities.

After a couple of hours, ADAM generates a ShakeMap dashboard which provides a first estimation of possible earthquake damages and impact on the population, taking into consideration the geology structure and soil consistency in the affected areas. The Shake Map estimates the intensity of an earthquake using the Modified Mercalli scale with classes ranging from I (no potential shaking and damage) to X+ (extreme potential shaking and very heavy potential damage).
ADAM
Tropical Storms and Rainfall
ADAM Tropical Storms monitors every significant tropical storm worldwide, creating dashboards with maps and tropical storm-related information such as wind speed, storm categories, population living within the different wind buffers and calculating the distance between the storm and the closest WFP and UNHRD facilities.

To complement the dashboard showing the storm-related information, ADAM automatically produces a dashboard that shows the expected rainfall in the area hit by the storm and the key cities that may be affected.
Accurate, reliable and timely information is crucial for effective response. Geospatial technology plays an indispensable role in moving from data to information to decisions, ultimately giving WFP and its partners a comprehensive picture of the situation on the ground. Data collected through mobile applications, drones and satellites are brought together to provide operational information for our first responders. This section highlights a few of the common products produced during this phase.
A General Logistics Planning Map (GLPM) is an important standard map applicable across all humanitarian logistics contexts, which visualizes key national logistics infrastructure and networks, administrative boundaries, topographic features (such as waterbodies and elevation) and settlements. It can be used by organisations to understand country logistics context and plan their own operations working from the same reference point. A General Logistics Planning Map (GLPM) contains different layers showing road and river networks, border crossing points and main cities. It shows where critical transport infrastructure and access points are located and used in response planning for staff to see where key infrastructure is located and how they can access different areas.
The road from Chimanimani to Charleswood is accessible by 7mt trucks.

The road from Charleswood to Tilbury is accessible by 10 mt truck.

Road open to Hangani for 4x4 only.

Chimanimani town accessible by 7mt trucks.

Mutambara Accessible by 4x4.

Mutambara Accessible by 4x4.

Chikukwa Accessible by 3 mt trucks.

The road from Chimanimani to Charleswood by 3 mt truck.
Access constraints maps show physical access constraints that could affect WFP operations. This could be roads damaged by floods, earthquakes or landslide, roads under construction or closed by government for security reasons. Alongside global sources, these maps use field data from partner organizations to present a complete picture of the accessibility situation in the area of study.
FLOOD DETECTION & PRELIMINARY IMPACT ANALYSIS

Analysis of the 11 districts that were the most affected by windspeed was conducted using the available field and aerial assessments.

Satellite detected waters were observed as of 28 Apr 2019.

<table>
<thead>
<tr>
<th>Localities</th>
<th>Satellite Detected Waters (Sq Km)</th>
<th>Inundated Crop Land (Sq Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nhal</td>
<td>513.13</td>
<td>7.38</td>
</tr>
<tr>
<td>Njuge</td>
<td>195.48</td>
<td>4.54</td>
</tr>
<tr>
<td>Bilbiza</td>
<td>178.98</td>
<td>0</td>
</tr>
<tr>
<td>Motopo</td>
<td>162.89</td>
<td>0</td>
</tr>
<tr>
<td>Mahate</td>
<td>92.08</td>
<td>0</td>
</tr>
<tr>
<td>Quissanga</td>
<td>26.86</td>
<td>0</td>
</tr>
<tr>
<td>Macomia</td>
<td>25.69</td>
<td>0</td>
</tr>
<tr>
<td>Quiterua</td>
<td>25.88</td>
<td>0</td>
</tr>
<tr>
<td>Muaguide</td>
<td>19.24</td>
<td>0</td>
</tr>
<tr>
<td>Ibo</td>
<td>5.85</td>
<td>0</td>
</tr>
<tr>
<td>Quirimba</td>
<td>2.17</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1247.09</td>
<td>11.92</td>
</tr>
</tbody>
</table>

CITY of PEMBA with population >200,000 potentially affected by heavy rainfalls occurring currently (27-29 Apr)
These dashboards visualize areas affected by flooding to provide a comprehensive situation analysis. They use remotely sensed imagery to compare pre and post event information along with data on population distribution, past rainfall accumulation and weather forecasts. If data is available, the product can also show potentially affected populations and cropland.
These maps are amongst the key products for supporting operations in the supply chain processes. They enable a full overview of the supply chain, asset visibility and operational readiness on and off the country of interest, to inform planning and execution of current and future operations.
The cluster approach ensures predictable leadership and accountability in all main sectors or areas of humanitarian response and strengthens system-wide preparedness and technical capacity to respond to humanitarian emergencies. In recognition of its operational expertise, research and use of innovative tools, WFP has been appointed by the Inter-Agency Standing Committee (IASC) to lead the Emergency Telecommunications and Logistics Clusters and co-lead the Food Security Cluster with the Food and Agricultural Organization of the United Nations (FAO). WFP GIS team provides continuous support to the Clusters by producing static and interactive maps, to make sure that information is provided in a capturing and effective way.
These dashboards are essentially a snapshot of a given ETC operation. They include a country map showing which ETC services are available or planned in which locations, funding status, the number of ETC partners involved in the response and the contact details of the relevant ETC Coordinator. The dashboards are a standalone IM product and are often used at meetings as they provide an easy-to-read overview of the ETC response in an emergency and therefore facilitate decision making and coordination efforts.
As the world's single most popular social network, Facebook owns great amounts of data about mobility patterns. By looking at where people move, when they move, and how often they move, it's possible to make predictions about where disease outbreaks are more likely to occur or where displaced people will go in the aftermath of a natural disaster.

A recent partnership between Facebook and WFP allows the organization to produce maps that show how many people have access to a cellular network – 2G, 3G and 4G. In areas with a low network coverage, emergency responders will have to dedicate more resources to get information about the affected population and their movements during major emergencies.
The Logistics Cluster provides coordination and information management to support operational decision-making and improve the predictability, timeliness and efficiency of the humanitarian emergency response.

Due to its expertise in the field of humanitarian logistics, WFP was chosen as lead agency for the Logistics Cluster and acts as a “provider of last resort” offering common logistics services, when critical gaps affect the humanitarian response. The WFP GIS team provide support to the Logistics Cluster by producing a range of maps that communicate important operational information in a clear way, identifying the locations of key data in operational contexts where the Logistics Cluster is activated.

These maps are produced with standard templates and branding developed jointly by the Cluster and GIS teams and share information with logistics officers and humanitarian responders, in-country and globally. 392 maps were published on the Logistics Cluster website in the last year [1] and all the available maps received 53,000 page-views in that time. Maps are almost always the most or second-most viewed information management (IM) products for the respective operation pages on the Logistics Cluster website.
These maps are amongst the key IM products in Logistics Cluster operations. They visualize the range of services that the cluster will facilitate in the operation, such as coordination, storage, air transport and IM, and where these services will take place. They play a crucial role in strategic planning for organizations in the wider humanitarian community who wish to access services facilitated by the Logistics Cluster.
LOGISTICS CAPACITY ASSESSMENT (LCA)
The Logistics Capacity Assessment (LCA) provides logisticians with fundamental, baseline logistics information. The assessment looks at logistics infrastructure and services in a country and represents an operational tool which focuses on critical elements of the supply chain links, such as port and airport capacities, road and rail networks, storage facilities, handling procedures, labour rates, local transportation resources and other key elements required for operational support. It shows logisticians what services already exist, where they are located and therefore where the gaps are.

The LCA focuses on countries or regions where there is potential for a sudden onset emergency to occur or where humanitarian actors are present but there is a lack of consolidated information on logistics infrastructure and services.
LOGISTICS CLUSTER PREPAREDNESS PLATFORM
The Logistics Cluster Preparedness Platform (LCPP) is designed as a dynamic, innovative digital information tool to ensure all actors work towards a common, coordinated and localized approach to logistics preparedness, strengthening information management and knowledge sharing capacities. With the capacity to combine information on logistics infrastructure, imagery, mapping, early warning figures and even crowd-sourced updates from the affected area, the platform aims to fill the information gap as a common gateway for rapid, validated, real-time data.

The speed of the information availability not only optimizes the decision-making process, it also generates a common operational picture for the logistics community. During the preparedness phase, the same data can be used to strengthen logistics planning and roll-out, ultimately enhancing all stages of the humanitarian response cycle.
The Food Security Cluster (FSC) coordinates the food security response during a humanitarian emergency, addressing issues of food availability, access and utilisation. FSC is currently active in over 30 countries and provides guidance at country level, supporting a broad and timely response.

The WFP GIS team supports the Food Security Cluster by producing a wide range of maps that identify which partners are present, the areas they are assisting and any response gaps in the people reached vs targeted. FSC also works closely with the Integrated Food Security Phase Classification (IPC) and all maps produced by GIS adhere to these standards.

Maps are a key element of the Food Security Cluster’s information management products. They are shared externally with partners and other UN agencies to determine the severity of the food insecurity situation in a country and contribute to the coordination of an effective response.
In countries where WFP operations rely on aviation - because natural disasters or conflicts put entire areas beyond the reach of land transport or commercial flights, leaving air transport as the only means of access - maps showing the routes of the United Nations Humanitarian Air Service (UNHAS) provide nearly real-time information on how to provide access to all humanitarian entities, allowing life-saving projects to be implemented and monitored.
These maps are used to provide the Country Offices with additional information about the recipients of Cash-Based Transfers (CBT) and the location of specific Financial Service Providers (FSPs), in terms of geographical distribution and their density compared to the local population.

This information will be used eventually in the Macro Financial Assessments (MaFA) to determine, based on their recent performance, coverage, reliability and available services, which FSPs could be potentially used as financial partners for CBT operations. When applicable, a map on CBT beneficiaries for the previous year is produced as well, to have a better understanding of the areas already covered by CBT operations.
EBOLA OPERATION DASHBOARDS
The WFP HQ GIS team has been constantly involved, over the last few years, in a series of projects whose final aim is to maintain and improve the GIS infrastructure at the WFP Headquarters and support Regional Bureaux and Country Offices in implementing the GIS infrastructure and related data preparedness activities.

The greatest challenge remains bringing together capacities in different divisions and improve coordination for better results and to avoid duplication of efforts. With the introduction of Spatial Data Infrastructure in many Country Offices, continuous updates and improvements to Geonode (WFP’s corporate web application for creating and sharing maps) as well as access to an unlimited number of GIS licenses, we can now engage with more GIS practitioners and users across the organization.
Geonode is WFP’s corporate platform for sharing information internally and externally. Along with the Spatial Data Infrastructure, Geonode represents the backbone of WFP’s Geospatial Support Unit’s infrastructure. The platform, based on open-source technology, was launched in 2014 and is used as a data hub for collecting and disseminating geospatial information through other platforms (internal & external). There is a major update taking place in 2019, which will increase the performance and the appearance of the platform.
The document contains a map with markers indicating locations. It seems to be related to geospatial data and accessibility for WFP and partners. The text on the map is not legible, but it likely details the accessibility data as of 18 August.
The Spatial Data Infrastructure (SDI) project is the other major pillar of the GIS Infrastructure. The SDI project was launched in 2010 with the objectives to establish a standardized way to store data and synchronize them between HQ, RBs and COs, build capacity on the use of the new infrastructure and the tools, foster partnerships and strengthen the collaboration with units and agencies (GIS related). The project has already been implemented in more than 20 countries through a collaboration with COs, RBs and HQ IT.
Currently, many corporate systems store location-based data. However, each system stores the data in a different format and in many cases without geographical coordinates, thus making the data integration across all platforms extremely difficult and close to impossible. The aim of the GeoEnabler project is to unify locations across all corporate systems (WINGS, COMET, SCOPE, LESS, ...) by ensuring a single unique ID to each location. This will ensure that the location data is only built once and used many times for several applications and therefore, the maintenance and update of this data is done in one single place.